Friday, February 8, 2013

Scientist: Genetic engineering is based on dramatically incomplete knowledge

Scientist: Genetic engineering is based on dramatically incomplete knowledge | The Organic & Non-GMO Report

John Vandermeer is Asa Gray Distinguished University Professor of Ecology and Evolutionary Biology at the University of Michigan. His research focuses on tropical agroecosystems and theoretical ecology. Professor Vandermeer has written or edited 13 books focusing on agroecology and agroecosystems.

Professor Vandermeer recently wrote a blog titled “Discovering Science” about former anti-GMO campaigner Mark Lynas’s “conversion” to supporting genetically modified crops and foods. In the blog, Professor Vandermeer suggests that Lynas continue his education of science and look more deeply into the science of genetic engineering to see the negative human and animal health impacts of Roundup herbicide, the simplistic—and faulty—view of gene insertion and its unintended consequences on a complex genome, weed and insect resistance problems resulting from GM crops, and the myth of “feeding the world” with GMOs.
Ken Roseboro, editor of The Organic & Non-GMO Report, recently interviewed Professor Vandermeer.

In your recent blog, you mention Mark Lynas’s enthusiasm for science as ideology. Can you expand on this?
Vandermeer: There is an ideological perspective that any new technology based on science is automatically good no matter what. The truth is that it’s not always good. For example, thalidomide wasn’t good. (Thalidomide was a drug introduced in the late 1950s to help pregnant women with effects of morning sickness. It was later found to cause birth defects.)

The science of genetic engineering relies on the theory that inserting one gene will produce one desired trait. Do you see this as too simplistic?
Vandermeer: Yes, most molecular biologists understand this. Genetic engineering is based on a dramatically incomplete knowledge of the genome. It is fundamentally based on an early naïve understanding that the genome produces DNA, which produces pieces of RNA, which produce proteins and that is the end of the story. But we now know that there are an enormous number of complications that are involved in that basic story. Molecular biology has now advanced to the point that we now understand that the genome is like a complicated ecosystem. Doing just one thing such as inserting a piece of DNA into a big genome and expecting just the single protein you are planning for and nothing else is probably not possible.

No comments:

Post a Comment